Factored Upper Bounds for Multiagent Planning Problems under Uncertainty with Non-Factored Value Functions

نویسندگان

  • Frans A. Oliehoek
  • Matthijs T. J. Spaan
  • Stefan J. Witwicki
چکیده

Nowadays, multiagent planning under uncertainty scales to tens or even hundreds of agents. However, current methods either are restricted to problems with factored value functions, or provide solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions, which would additionally allow for meaningful benchmarking of methods of the latter category. To mitigate this problem, this paper introduces a family of influence-optimistic upper bounds for factored Dec-POMDPs without factored value functions. We demonstrate how we can achieve firm quality guarantees for problems with hundreds of agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence-Optimistic Local Values for Multiagent Planning - Extended Version

Recent years have seen the development of a number of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. To allow for meaningful benchmarking through measurable quality guarantees on a very gen...

متن کامل

Automated Generation of Interaction Graphs for Value-Factored Dec-POMDPs

The Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a powerful model for multiagent planning under uncertainty, but its applicability is hindered by its high complexity – solving Dec-POMDPs optimally is NEXP-hard. Recently, Kumar et al. introduced the Value Factorization (VF) framework, which exploits decomposable value functions that can be factored into subfunctions....

متن کامل

Automated Generation of Interaction Graphs for Value-Factored Decentralized POMDPs

The Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a powerful model for multiagent planning under uncertainty, but its applicability is hindered by its high complexity – solving Dec-POMDPs optimally is NEXP-hard. Recently, Kumar et al. introduced the Value Factorization (VF) framework, which exploits decomposable value functions that can be factored into subfunctions....

متن کامل

Exploiting locality of interaction in factored Dec-POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) constitute an expressive framework for multiagent planning under uncertainty, but solving them is provably intractable. We demonstrate how their scalability can be improved by exploiting locality of interaction between agents in a factored representation. Factored Dec-POMDP representations have been proposed before, but o...

متن کامل

Solving Factored MDPs with Continuous and Discrete Variables

Although many real-world stochastic planning problems are more naturally formulated by hybrid models with both discrete and continuous variables, current state-of-the-art methods cannot adequately address these problems. We present the first framework that can exploit problem structure for modeling and solving hybrid problems efficiently. We formulate these problems as hybrid Markov decision pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015